Droplet impact

A liquid droplet impinging on a solid surface is a ubiquitous and essential process both in Nature and in technology.  The interplay of several parameters, including liquid type, surface property, and surrounding gas, often produces surprising outcomes and obscures underlying mechanism. With high-speed-imaging, we experimentally study drop impact on micro-and-nano- structured superhydrophobic surfaces, with a focus on the effects of small-scale roughness, impact velocity, and air pressure.


Droplet Impact on frozen surface

Figure 1: impact on a cold surface causing freezing.

Impact of oil on water
Figure 2: Impact of oil on water.

Figure 3: impact of a water drop on sand substrate.

Figure 4: Cover of Langmuir showing water droplet impacting on superhydrophobic carbon nanofiber jungle.


Info: Detlef Lohse, Devaraj van der Meer

Researchers: Pallav Kant, SongChuan Zhao, Rianne de Jong, Oscar Enríquez, Erik-Jan Staat, Hrudya Nair, Yoshi Tagawa, Tuan Tran, Claas-Willem Visser, Amy Tsai, Hélène de Maleprade, Roeland van der Veen, Arturo Susarrey-Arce, Andrea Prosperetti, Chao Sun, Devaraj van der Meer, Detlef Lohse.
Embedding: JMBC, NWO

Publications

Fast-freezing kinetics inside a droplet impacting on a cold surface[arΧiv]
P. Kant, R.B.J. Koldeweij, K. Harth, M. A. J. van Limbeek, and D. Lohse
Proc. Natl. Acad. Sci. USA 117, 2788–2794 (2020)BibTeΧ
Formation of a hidden cavity below droplets impacting on a granular substrate[Open Access]
S. Zhao, R. de Jong, and D. van der Meer
J. Fluid Mech. 880, 59–72 (2019)BibTeΧ
Deep pool water-impacts of viscous oil droplets[Open Access]
U. Jain, M. Jalaal, D. Lohse, and D. van der Meer
Soft Matter 15, 4629–4638 (2019)BibTeΧ
See also: Inside front Cover Page
Liquid-Grain Mixing Suppresses Droplet Spreading and Splashing during Impact[arΧiv]
S. Zhao, R. de Jong, and D. van der Meer
Phys. Rev. Lett. 118, 054502 (2017)BibTeΧ
Exploring droplet impact near a millimetre-sized hole: comparing a closed pit with an open-ended pore[arΧiv]
R. de Jong, O.R. Enríquez, and D. van der Meer
J. Fluid Mech. 772, 427–444 (2015)BibTeΧ
Phase diagram for droplet impact on superheated surfaces
H.J.J. Staat, A.T. Tran, B. Geerdink, G. Riboux, C. Sun, J. Gordillo Arias de Saavedra, and D. Lohse
J. Fluid Mech. 779, R3 (2015)BibTeΧ
Fingering patterns during droplet impact on heated surfaces
M. Khavari, C. Sun, D. Lohse, and A.T. Tran
Soft Matter 11, 3298 (2015)BibTeΧ
The Leidenfrost temperature increase for impacting droplets on carbon-nanofiber surfaces[arΧiv]
H. Nair, H.J.J. Staat, A.T. Tran, A. van Houselt, A. Prosperetti, D. Lohse, and C. Sun
Soft Matter 10, 2102–2109 (2014)BibTeΧ
Air entrainment during impact of droplets on liquid surfaces
A.T. Tran, H. de Maleprade, C. Sun, and D. Lohse
J. Fluid Mech. 726, R3 (2013)BibTeΧ
Direct measurements of air layer profiles under impacting droplets using high-speed color interferometry[arΧiv]
R.C.A. van der Veen, A.T. Tran, D. Lohse, and C. Sun
Phys. Rev. E 85, 026315 (2012)BibTeΧ
Microdroplet impact at very high velocity[arΧiv]
C.W. Visser, Y. Tagawa, C. Sun, and D. Lohse
Soft Matter 8, 10732–10737 (2012)BibTeΧ
Drop Impact upon Micro- and Nanostructured Superhydrophobic Surfaces[arΧiv]
P.A. Tsai, S. Pacheco, C. Pirat, L. Lefferts, and D. Lohse
Langmuir 25, 12293–12298 (2009)BibTeΧ
See also: cover of that issue


The 10th Complex Motion in Fluids 2022
AQUA
Max Planck Gesellschaft
MCEC
Twente
Centre for Scientific Computing
Facebook
YouTube