Droplet impact
A liquid droplet impinging on a solid surface is a ubiquitous and essential process both in Nature and in technology. The interplay of several parameters, including liquid type, surface property, and surrounding gas, often produces surprising outcomes and obscures underlying mechanism. With high-speed-imaging, we experimentally study drop impact on micro-and-nano- structured superhydrophobic surfaces, with a focus on the effects of small-scale roughness, impact velocity, and air pressure.

Figure 1: impact on a cold surface causing freezing.

Figure 2: Impact of oil on water.

Figure 3: impact of a water drop on sand substrate.

Figure 4: Cover of Langmuir showing water droplet impacting on superhydrophobic carbon nanofiber jungle.
Info: Detlef Lohse, Devaraj van der Meer
Researchers: Pallav Kant, SongChuan Zhao, Rianne de Jong, Oscar Enríquez, Erik-Jan Staat, Hrudya Nair, Yoshi Tagawa, Tuan Tran, Claas-Willem Visser, Amy Tsai, Hélène de Maleprade, Roeland van der Veen, Arturo Susarrey-Arce, Andrea Prosperetti, Chao Sun, Devaraj van der Meer, Detlef Lohse.
Embedding: JMBC, NWO
Publications
Fast-freezing kinetics inside a droplet impacting on a cold surface[arΧiv] P. Kant, R.B.J. Koldeweij, K. Harth, M. A. J. van Limbeek, and D. Lohse Proc. Natl. Acad. Sci. USA 117, 2788–2794 (2020)BibTeΧ |
Formation of a hidden cavity below droplets impacting on a granular substrate[Open Access] S. Zhao, R. de Jong, and D. van der Meer J. Fluid Mech. 880, 59–72 (2019)BibTeΧ |
Deep pool water-impacts of viscous oil droplets[Open Access] U. Jain, M. Jalaal, D. Lohse, and D. van der Meer Soft Matter 15, 4629–4638 (2019)BibTeΧ See also: Inside front Cover Page |
Liquid-Grain Mixing Suppresses Droplet Spreading and Splashing during Impact[arΧiv] S. Zhao, R. de Jong, and D. van der Meer Phys. Rev. Lett. 118, 054502 (2017)BibTeΧ |
Exploring droplet impact near a millimetre-sized hole: comparing a closed pit with an open-ended pore[arΧiv] R. de Jong, O.R. Enríquez, and D. van der Meer J. Fluid Mech. 772, 427–444 (2015)BibTeΧ |
Phase diagram for droplet impact on superheated surfaces H.J.J. Staat, A.T. Tran, B. Geerdink, G. Riboux, C. Sun, J. Gordillo Arias de Saavedra, and D. Lohse J. Fluid Mech. 779, R3 (2015)BibTeΧ |
Fingering patterns during droplet impact on heated surfaces M. Khavari, C. Sun, D. Lohse, and A.T. Tran Soft Matter 11, 3298 (2015)BibTeΧ |
The Leidenfrost temperature increase for impacting droplets on carbon-nanofiber surfaces[arΧiv] H. Nair, H.J.J. Staat, A.T. Tran, A. van Houselt, A. Prosperetti, D. Lohse, and C. Sun Soft Matter 10, 2102–2109 (2014)BibTeΧ |
Air entrainment during impact of droplets on liquid surfaces A.T. Tran, H. de Maleprade, C. Sun, and D. Lohse J. Fluid Mech. 726, R3 (2013)BibTeΧ |
Direct measurements of air layer profiles under impacting droplets using high-speed color interferometry[arΧiv] R.C.A. van der Veen, A.T. Tran, D. Lohse, and C. Sun Phys. Rev. E 85, 026315 (2012)BibTeΧ |
Microdroplet impact at very high velocity[arΧiv] C.W. Visser, Y. Tagawa, C. Sun, and D. Lohse Soft Matter 8, 10732–10737 (2012)BibTeΧ |
Drop Impact upon Micro- and Nanostructured Superhydrophobic Surfaces[arΧiv] P.A. Tsai, S. Pacheco, C. Pirat, L. Lefferts, and D. Lohse Langmuir 25, 12293–12298 (2009)BibTeΧ See also: cover of that issue |