Objectives

The goal of the program is to create insight into unresolved issues in the current inkjet process and to improve and extend the functionality of the inkjet printing process to meet future requirements. The functional modelling of the inkjet printing process not only concerns the numerical simulations but also the physical theory, which explains the results, and the experiments, which validate the results. Therefore the program combines experimental, numerical, and theoretical approaches.

Overview

Visualization of the series of events and physical processes in inkjet printing, from the ink–piezo actuator interaction (left), via ink jetting (middle), to the interaction between ink and the receiving substrate (right). The circled numbers refer to the seven fundamental fluid dynamics challenges referenced in the sections of this review: (❶) the flow and acoustics in the inkjet printhead; (❷) bubbles that are entrained into the nozzle and disturb the printing operation; (❸) the wetting dynamics on the nozzle plate, including the meniscus, droplet, and film dynamics; (❹) the jetting process, including satellite formation; (❺) the drop impact and spreading on the substrate; (❻) drop coalescence, drop–film interaction, and ink–paper interaction; and (❼) the evaporation and solidification of the ink. Image and caption: Annu. Rev. Fluid Mech. 2022. 54:349–82

Participants

Program leader

 
Prof. Dr. Detlef Lohse
University of Twente

Group leader

 
Dr. Christian Diddens
University of Twente

Project representative of Canon Production Printing

 
Prof. Dr. Marjolein van der Linden
Canon, University of Twente

PhD candidates

 
Duarte Rocha
University of Twente
 
Pim Dekker
University of Twente

Conferences

Publications 2021—2024

  1. Tristan H. B. Demont, Stein K. F. Stoter, Christian Diddens, Harald van Brummelen, On the Consistency of Dynamic Wetting Boundary Conditions for the Navier-Stokes-Cahn-Hilliard Equations. https://arxiv.org/abs/2407.06049
  2. Duarte Rocha, Philip L. Lederer, Pim J. Dekker, Alvaro Marin, Detlef Lohse, Christian Diddens, Evaporating sessile droplets: solutal Marangoni effects overwhelm thermal Marangoni flow. https://arxiv.org/abs/2410.17071
  3. Maaike Rump, Christian Diddens, Uddalok Sen, Michel Versluis, Detlef Lohse, Tim Segers, Role of surfactants on droplet formation in piezoacoustic inkjet printing across microsecond-to-second timescales. https://arxiv.org/pdf/2406.02389
  4. Christian Diddens, Pim J. Dekker, Detlef Lohse, Non-monotonic surface tension leads to spontaneous symmetry breaking in a binary evaporating drop. https://arxiv.org/pdf/2402.17452
  5. Duco van Buuren, Pallav Kant, Jochem G. Meijer, Christian Diddens, and Detlef Lohse, Deforming ice with drops, Phys. Rev. Lett. 133, in press (2024). https://doi.org/10.1103/PhysRevLett.133.214002
  6. Yuki Wakata, Xing Chao, Chao Sun, Christian Diddens, Evaporation of acoustically levitated bicomponent droplets: mass and heat transfer characteristics, J. Fluid Mech. 984, A17 (2024). https://doi.org/10.1017/jfm.2024.204
  7. Christian Diddens, Duarte Rocha, Bifurcation tracking on moving meshes and with consideration of azimuthal symmetry breaking instabilities, J. Comput. Phys. 518, 113306 (2024). https://doi.org/10.1016/j.jcp.2024.113306
  8. Lijun Thayyil Raju, Christian Diddens, Javier Rodriguez-Rodriguez, Marjolein N. van der Linden, Xuehua Zhang, Detlef Lohse, and Uddalok Sen, Evaporation of binary liquids from a capillary tube, J. Fluid Mech. 983, A21 (2024). https://doi.org/10.1017/jfm.2024.122
  9. Jochem G. Meijer, Duarte Rocha, Annemarie M. Linnenbank, Christian Diddens, and Detlef Lohse, Enhanced bubble growth near an advancing solidification front, J. Fluid Mech. 996, A22 (2024). https://doi.org/10.1017/jfm.2024.777
  10. Karun P.N. Datadien, Gianluca Di Staso, Christian Diddens, Herman Wijshoff, Federico Toschi, Comparison of Lattice Boltzmann, Finite Element and Volume of Fluid Multicomponent Methods for Microfluidic Flow Problems and the Jetting of Microdroplets, Commun. Comput. Phys. 33, 912 (2023). https://dx.doi.org/10.4208/cicp.OA-2022-0181
  11. Simon Hartmann, Christian Diddens, Maziyar Jalaal, Uwe Thiele, Sessile drop evaporation in a gap -- crossover between diffusion-limited and phase transition-limited regime, J. Fluid Mech. 960, A32 (2023). https://dx.doi.org/10.1017/jfm.2023.176
  12. Vatsal Sanjay, Srinath Lakshman, Pierre Chantelot, Jacco H. Snoeijer, and Detlef Lohse, Drop impact on viscous liquid films, J. Fluid Mech. 958, A25 (2023). https://doi.org/10.1017/jfm.2023.13
  13. Vatsal Sanjay, Pierre Chantelot, and Detlef Lohse, When does an impacting drop stop bouncing?, J. Fluid Mech. 958, A26 (2023). https://doi.org/10.1017/jfm.2023.55
  14. Jochem G. Meijer, Yanshen Li, Christian Diddens, and Detlef Lohse, On the rising and sinking motion of bouncing oil drops in strongly stratified liquids, J. Fluid Mech. 966, A14 (2023). https://doi.org/10.1017/jfm.2023.415
  15. Maaike Rump, Uddalok Sen, Roger Jeurissen, Hans Reinten, Michel Versluis, Detlef Lohse, Christian Diddens, and Tim Segers, Selective evaporation at the nozzle exit in piezoacoustic inkjet printing, Phys. Rev. Applied 19, 054056 (2023). https://doi.org/10.1103/PhysRevApplied.19.054056
  16. Detlef Lohse, Fundamental fluid dynamics challenges in inkjet printing, Annu. Rev. Fluid Dyn. 54, 349-382 (2022). https://doi.org/10.1146/annurev-fluid-022321-114001
  17. Ahmed Jarray, Annika Feichtinger, Elke Scholten, Linking intermolecular interactions and rheological behaviour in capillary suspensions, J. Colloid Interf. Sci. 627, 415-426, (2022). https://doi.org/10.1016/j.jcis.2022.07.067
  18. Ambre Bouillant, Pim J. Dekker, Michiel A. Hack, Jacco H. Snoeijer, Rapid viscoelastic spreading, Phys. Rev. Fluids 7, 123604 (2022). https://doi.org/10.1103/PhysRevFluids.7.123604
  19. Hanneke Gelderblom, Christian Diddens, Alvaro Marin, Evaporation-driven liquid flow in sessile droplets, Soft Matter 18, 8535 (2022). https://doi.org/10.1039/D2SM00931E
  20. Yaxing Li, Pengyu Lv, Christian Diddens, and Detlef Lohse, Physiochemical hydrodynamics of the phase segregation in an evaporating binary microdroplet, J. Fluid Mech. 946, A37 (2022). https://doi.org/10.1017/jfm.2022.614
  21. Vatsal Sanjay, Uddalok Sen, Pallav Kant, and Detlef Lohse, Taylor-Culick retractions and the influence of the surroundings, J. Fluid Mech. 948, A14 (2022). https://doi.org/10.1017/jfm.2022.671
  22. Ricardo Arturo Lopez de la Cruz, Christian Diddens, Xuehua Zhang, and Detlef Lohse, Oscillatory droplet dissolution from competing Marangoni and gravitational flows, Phys. Rev. Fluids 7, 094006 (2022). https://doi.org/10.1103/PhysRevFluids.7.094006
  23. Maaike Rump, Youssef Saade, Uddalok Sen, Kamel Fezzaa, Michel Versluis, Detlef Lohse, and Tim Segers, Vorticity-induced flow-focusing leads to bubble entrainment in an inkjet printhead: Synchrotron x-ray and volume-of-fluid visualizations, Phys. Rev. Fluids 7, 104004 (2022). https://doi.org/10.1103/PhysRevFluids.7.104004
  24. Maziyar Jalaal, Borge ten Hagen, Hai Le The, Christian Diddens, Detlef Lohse, and Alvaro Marin, Interfacial aggregation of self-propelled Janus colloids in sessile droplets, Phys. Rev. Fluids 7, 110514 (2022). https://doi.org/10.1103/PhysRevFluids.7.110514
  25. Lijun Thayyil Raju, Christian Diddens, Yaxing Li, Alvaro Marin, Marjolein N. van der Linden, Xuehua Zhang, and Detlef Lohse, Evaporation of a Sessile Colloidal Water-Glycerol Droplet: Marangoni Ring Formation, Langmuir 38, 12082-12094 (2022). https://doi.org/10.1021/acs.langmuir.2c01949
  26. Tristan H. B. Demont, Gertjan van Zwieten, Christian Diddens, Harald van Brummelen, A robust and accurate adaptive approximation method for a diffuse-interface model of binary-fluid flows, Computer Methods in Applied Mechanics and Engineering 400, 115563 (2022). https://doi.org/10.1016/j.cma.2022.115563
  27. Competition between thermal and surfactant-induced Marangoni flow in evaporating sessile droplets, Ruben T. Van Gaalen, Herman Wijshoff, Hans Kuerten, Christian Diddens, J. Colloid Interf. Sci. 622, 892-903 (2022). https://doi.org/10.1016/j.jcis.2022.04.146
  28. Hans Reinten, Yogesh Jethani, Arjan Fraters, Roger Jeurissen, Detlef Lohse, Michel Versluis, and Tim Segers, Resonance behavior of a compliant piezo-driven inkjet channel with an entrained microbubble, J. Acoust. Soc. Am. 151, 2545-2557 (2022). https://doi.org/10.1121/10.0009784
  29. Huanshu Tan, Christian Diddens, Xuehua Zhang, and Detlef Lohse, Evaporation of ternary sessile droplets, RSC Soft Matter Series No 14, 33 - 46 (2022). https://doi.org/10.1039/9781839161186-00033
  30. Pim J. Dekker, Michiel A. Hack, Walter Tewes, Charu Datt, Ambre Bouillant, Jacco H. Snoeijer, When Elasticity Affects Drop Coalescence, Phys. Rev. Lett. 128, 028004 (2022). https://doi.org/10.1103/PhysRevLett.128.028004
  31. Jens H. Kasper, Vanessa Magnanimo, Sjoerd D.M. de Jong, Arjan Beek, Ahmed Jarray, Effect of viscosity on the avalanche dynamics and flow transition of wet granular matter, Particuology 59, 64-75, (2021). https://doi.org/10.1016/j.partic.2020.12.001
  32. Lijun Thayyil Raju, Olga Koshkina, Huanshu Tan, Andreas Riedinger, Katharina Landfester, Detlef Lohse, and Xuehua Zhang, Particle size determines the shape of supraparticles in self-lubricating ternary droplets, ACS Nano 15, 4256-4267 (2021). https://doi.org/10.1021/acsnano.0c06814
  33. Ruben T. van Gaalen, Christian Diddens, Daniel P. Siregar, Herman Wijshoff, Hans Kuerten, Absorption of surfactant-laden droplets into porous media: A numerical study, J. Colloid Interf. Sci. 597, 149-159 (2021). https://doi.org/10.1016/j.jcis.2021.03.119
  34. Christian Diddens, Yaxing Li, Detlef Lohse, Competing Marangoni and Rayleigh convection in evaporating binary droplets, J. Fluid Mech. 914, A23 (2021). https://doi.org/10.1017/jfm.2020.734
  35. Ruben T. van Gaalen, Christian Diddens, Herman Wijshoff, Hans Kuerten, Marangoni circulation in evaporating droplets in the presence of soluble surfactants, J. Colloid Interf. Sci. 584, 622-633 (2021). https://doi.org/10.1016/j.jcis.2020.10.057
  36. Vatsal Sanjay, Detlef Lohse, and Maziyar Jalaal Bursting bubble in a viscoplastic medium, J. Fluid Mech. 922, A22 (2021). https://doi.org/10.1017/jfm.2021.489
  37. Ricardo Arturo Lopez de la Cruz, Christian Diddens, Xuehua Zhang, and Detlef Lohse, Marangoni instability triggered by selective evaporation of a binary liquid inside a Hele-Shaw cell, J. Fluid Mech. 923, A16 (2021). https://doi.org/10.1017/jfm.2021.555
  38. Uddalok Sen, Charu Datt, Tim Segers, Herman Wijshoff, Jacco H. Snoeijer, Michel Versluis, Detlef Lohse, The retraction of jetted slender viscoelastic liquid filaments, J. Fluid Mech., 929, A25 (2021). https://doi.org/10.1017/jfm.2021.855
  39. Michiel A. Hack, Patrick Vondeling, Menno Cornelissen, Detlef Lohse, Jacco H.Snoeijer, Christian Diddens, Tim Segers, The asymmetric coalescence of two droplets with different surface tensions is caused by capillary waves, Phys. Rev. Fluids 6, 104002 (2021). https://doi.org/10.1103/PhysRevFluids.6.104002
  40. Arjan Fraters, Maaike Rump, Roger Jeurissen, Marc van den Berg, Youri de Loore, Hans Reinten, Herman Wijshoff, Devaraj van der Meer, Detlef Lohse, Michel Versluis, and Tim Segers, Meniscus oscillations driven by flow-focusing lead to bubble pinch-off and entrainment in a piezo-acoustic inkjet nozzle, Phys. Rev. Applied 16, 044052 (2021). https://doi.org/10.1103/PhysRevApplied.16.044052