Wed February 9th 2022
16:00 – 17:00
Online
Seminar How colloidal physics instantiate life in biological cells
Roseanna Zia

Details:

We are interested in how physics at the colloidal scale instantiate life in biological cells. While principles from physics have driven recent paradigm shifts in how collective biomolecular behaviors orchestrate life, many mechanistic aspects of e.g. transcription, translation, and condensation remain mysterious because understanding and controlling them requires unifying two disparate physical regimes: the atomistic (structural biology) and the microscopic (systems biology). Colloidal-scale modeling bridges this divide and links molecular-scale behaviors to whole-cell function. Today I will discuss our computational model of a bacterial cell, where we represent biomolecules and their interactions physically and chemically, individually and explicitly. With it, we tackle a fundamental open question in biology, from a physico-chemical perspective: why protein synthesis speeds up during faster E. coli growth. We report a new mechanism, “stoichiometric crowding”, that leads to a previously undiscovered increase in ribosome productivity that in turn drives the speedup in protein synthesis. More generally, our computational study of protein synthesis in E. coli from the tandem perspective of cell biology and meso-scale physics presents a unique opportunity to broadly explore how the physical state of the cell impacts biological function – and to uncover links among genetic mutations, stress adaptation, and colloidal-scale physics that regulate cell growth or promote dysregulation and disease pathology. Our future vision of this work is a platform for physics-based therapeutics.
Go back to the agenda.

The 10th Complex Motion in Fluids 2022
AQUA
Max Planck Gesellschaft
MCEC
Twente
Centre for Scientific Computing
Facebook
YouTube