D. Lohse
X. Zhu

Joint POF group publications (24)

2020

Flow organization and heat transfer in turbulent wall sheared thermal convection[arΧiv]
A. Blass, X. Zhu, R. Verzicco, D. Lohse, and R.J.A.M. Stevens
J. Fluid Mech. 897, A22 (2020)BibTeΧ
From Rayleigh–Bénard convection to porous-media convection: how porosity affects heat transfer and flow structure[arΧiv]
S. Liu, L. Jiang, K.L. Chong, X. Zhu, Z. Wan, R. Verzicco, R.J.A.M. Stevens, D. Lohse, and C. Sun
J. Fluid Mech. 895, A–18 (2020)BibTeΧ
Direct numerical simulations of spiral Taylor–Couette turbulence[Open Access]
P. Berghout, R.J. Dingemans, X. Zhu, R. Verzicco, R.J.A.M. Stevens, W. van Saarloos, and D. Lohse
J. Fluid Mech. 887, A18–1–A18–16 (2020)BibTeΧ

2019

Absence of Evidence for the Ultimate Regime in Two-Dimensional Rayleigh-Benard Convection Reply[arΧiv]
X. Zhu, V. Mathai, R.J.A.M. Stevens, R. Verzicco, and D. Lohse
Phys. Rev. Lett. 123, 259402 (2019)BibTeΧ
Convective heat transfer along ratchet surfaces in vertical natural convection
H. Jiang, X. Zhu, X. Yang, R. Verzicco, and D. Lohse
J. Fluid Mech. 873, 1055–1071 (2019)BibTeΧ
Direct numerical simulations of Taylor–Couette turbulence: the effects of sand grain roughness[Open Access]
P. Berghout, X. Zhu, D. Chung, R. Verzicco, R.J.A.M. Stevens, and D. Lohse
J. Fluid Mech. 873, 260–286 (2019)BibTeΧ
Moving from momentum transfer to heat transfer – A comparative study of an advanced Graetz-Nusselt problem using immersed boundary methods[Open Access]
J. Lu, X. Zhu, E. Peters, R. Verzicco, D. Lohse, and J.A.M. Kuipers
Chem. Eng. Sci. 198, 317 – 333 (2019)BibTeΧ
Nu~Ra^(1/2) scaling enabled by multiscale wall roughness in Rayleigh–Bénard turbulence[Open Access]
X. Zhu, R.J.A.M. Stevens, O. Shishkina, R. Verzicco, and D. Lohse
J. Fluid Mech. 869, R4 (2019)BibTeΧ

2018

Rough-wall turbulent Taylor-Couette flow: The effect of the rib height[Open Access]
R.A. Verschoof, X. Zhu, D. Bakhuis, S.G. Huisman, R. Verzicco, C. Sun, and D. Lohse
Eur. Phys. J. E Soft Matter 41, 125 (2018)BibTeΧ
Transition to ultimate Rayleigh–Bénard turbulence revealed through extended self-similarity scaling analysis of the temperature structure functions[Open Access]
D.J. Krug, X. Zhu, D. Chung, I. Marusic, R. Verzicco, and D. Lohse
J. Fluid Mech. 851, R1–R11 (2018)BibTeΧ
AFiD-GPU: A versatile Navier–Stokes solver for wall-bounded turbulent flows on GPU clusters[arΧiv]
X. Zhu, E. Phillips, V. Spandan, J. Donners, G. Ruetsch, J. Romero, R. Ostilla Mónico, Y. Yang, D. Lohse, R. Verzicco, M. Fatica, and R.J.A.M. Stevens
Comp. Phys. Comm. 229, 199–210 (2018)BibTeΧ
Flutter to tumble transition of buoyant spheres triggered by rotational inertia changes[Open Access]
V. Mathai, X. Zhu, C. Sun, and D. Lohse
Nat. Commun. 9, 1792 (2018)BibTeΧ
Experimental investigation of heat transport in homogeneous bubbly flow[arΧiv]
B. Gvozdić, E.O. Alméras, V. Mathai, X. Zhu, D.P.M. van Gils, R. Verzicco, S.G. Huisman, C. Sun, and D. Lohse
J. Fluid Mech. 845, 226–244 (2018)BibTeΧ
Turbulent thermal superstructures in Rayleigh-Bénard convection[arΧiv]
R.J.A.M. Stevens, A. Blass, X. Zhu, R. Verzicco, and D. Lohse
Phys. Rev. Fluids 3, 041501 (2018)BibTeΧ
Transition to the Ultimate Regime in Two-Dimensional Rayleigh-Bénard Convection[arΧiv]
X. Zhu, V. Mathai, R.J.A.M. Stevens, R. Verzicco, and D. Lohse
Phys. Rev. Lett. 120, 144502 (2018)BibTeΧ
See also: Cover of that journal
Wall roughness induces asymptotic ultimate turbulence[arΧiv]
X. Zhu, R.A. Verschoof, D. Bakhuis, S.G. Huisman, R. Verzicco, C. Sun, and D. Lohse
Nature Phys. 14, 417–423 (2018)BibTeΧ
See also: Ultimate evidence for the ultimate regime
See also: Phys.org
Diffusive interaction of multiple surface nanobubbles: shrinkage, growth, and coarsening[Open Access]
X. Zhu, R. Verzicco, X. Zhang, and D. Lohse
Soft Matter 14, 2006–2014 (2018)BibTeΧ
See also cover of that article: Soft Matter 14, 1967–2196, 2018
Controlling Heat Transport and Flow Structures in Thermal Turbulence Using Ratchet Surfaces[arΧiv]
H. Jiang, X. Zhu, V. Mathai, R. Verzicco, D. Lohse, and C. Sun
Phys. Rev. Lett. 120, 044501 (2018)BibTeΧ

2017

Life stages of wall-bounded decay of Taylor-Couette turbulence[arΧiv]
R. Ostilla Mónico, X. Zhu, V. Spandan, R. Verzicco, and D. Lohse
Phys. Rev. Fluids 2, 114601 (2017)BibTeΧ
Roughness-Facilitated Local 1/2 Scaling Does Not Imply the Onset of the Ultimate Regime of Thermal Convection[arΧiv]
X. Zhu, R.J.A.M. Stevens, R. Verzicco, and D. Lohse
Phys. Rev. Lett. 119, 154501 (2017)BibTeΧ
Universal nanodroplet branches from confining the Ouzo effect
Z. Lu, M. Klein Schaarsberg, X. Zhu, L. Yeo, D. Lohse, and X. Zhang
Proc. Natl. Acad. Sci. USA 114, 10332–10337 (2017)BibTeΧ
Mass and Moment of Inertia Govern the Transition in the Dynamics and Wakes of Freely Rising and Falling Cylinders[arΧiv]
V. Mathai, X. Zhu, C. Sun, and D. Lohse
Phys. Rev. Lett. 119, 054501 (2017)BibTeΧ
See also: Phys.Org. August 17, 2017
Disentangling the origins of torque enhancement through wall roughness in Taylor–Couette turbulence[arΧiv]
X. Zhu, R. Verzicco, and D. Lohse
J. Fluid Mech. 812, 279–293 (2017)BibTeΧ

2016

Direct numerical simulation of Taylor–Couette flow with grooved walls: torque scaling and flow structure[arΧiv]
X. Zhu, R. Ostilla Mónico, R. Verzicco, and D. Lohse
J. Fluid Mech. 794, 746–774 (2016)BibTeΧ