Highlights

Science and Nature
Review highlights
Covers
Focus stories
Top cited

Science and Nature publications

Granular physics: creating a dry variety of quicksand
D. Lohse, R. Rauhé, R. Bergmann, and D. van der Meer
Nature 432, 689–690 (2004)BibTeΧ

Controlled vesicle deformation and lysis by single oscillating bubbles
P. Marmottant and S. Hilgenfeldt
Nature 423, 153–156 (2003)BibTeΧ

Snapping shrimp make flashing bubbles
D. Lohse, B. Schmitz, and M. Versluis
Nature 413, 477–478 (2001)BibTeΧ

Cavitation Science: Is there a simple theory of sonoluminescence? Reply to a comment on Nature 398 402-405 (1999) ,
S. Hilgenfeldt, S. Grossmann, and D. Lohse
Nature 409, 783–783 (2001)BibTeΧ

A simple explanation of light emission in sonoluminescence
S. Hilgenfeldt, S. Grossmann, and D. Lohse
Nature 398, 402–405 (1999)BibTeΧ
See also the accompanying: “News and Views”: “And there was light” by Robert Apfel, Nature 398, 378-379 (1999)

Review highlights

Nanobubbles and micropancakes: gaseous domains on immersed substrates
J.R.T. Seddon and D. Lohse
J. Phys.: Condens. Matter 23, 133001 (2011)BibTeΧ
Small-Scale Properties of Turbulent Rayleigh-Bénard Convection[Open Access]
D. Lohse and K.Q. Xia
Annu. Rev. Fluid Mech. 42, 335–364 (2010)BibTeΧ
Heat transfer and large scale dynamics in turbulent Rayleigh-Bénard convection[arΧiv]
G. Ahlers, S. Grossmann, and D. Lohse
Rev. Mod. Phys. 81, 503–537 (2009)BibTeΧ
Bubble puzzles
D. Lohse
Phys. Today 56, 36–42 (2003)BibTeΧ
Single-bubble sonoluminescence
M.P. Brenner, S. Hilgenfeldt, and D. Lohse
Rev. Mod. Phys. 74, 425–484 (2002)BibTeΧ

 

Journal and folder cover




Entrapment of interfacial nanobubbles on nano-structured surfaces
Y. Wang, X. Li, S. Ren, H.T. Alem, L. Yang, and D. Lohse
Soft Matter 13, 5381–5388 (2017)BibTeΧ



Soft Matter 13, 2017 Tan et all


Self-wrapping of an ouzo drop induced by evaporation on a superamphiphobic surface[arΧiv]
H. Tan, C. Diddens, M. Versluis, H.J. Butt, D. Lohse, and X. Zhang
Soft Matter 13, 2749–2759 (2017)BibTeΧ
See also Inside cover of that article: Soft Matter 13, 2720 (2017



Collective interactions in the nucleation and growth of surface droplets
C. Xu, H. Yu, S. Peng, Z. Lu, L. Lei, D. Lohse, and X. Zhang
Soft Matter 13, 937–944 (2017)BibTeΧ



PJ02_2017_U1_neu

Beständige Bläschen
D. Lohse
Physik Journal 16, 29–34 (2017)


10189_0039_11_2016xexternal

3D spherical-cap fitting procedure for (truncated) sessile nano- and micro-droplets & -bubbles[arΧiv]
H. Tan, S. Peng, C. Sun, X. Zhang, and D. Lohse
Eur. Phys. J. E Soft Matter 39, 106 (2016)BibTeΧ
Cover of that issue


PRL Volume 117, Issue 18

Vertically Bounded Double Diffusive Convection in the Finger Regime: Comparing No-Slip versus Free-Slip Boundary Conditions[arΧiv]
Y. Yang, R. Verzicco, and D. Lohse
Phys. Rev. Lett. 117, 184501 (2016)BibTeΧ




Phase diagram for droplet impact on superheated surfaces
H.J.J. Staat, A.T. Tran, B. Geerdink, G. Riboux, C. Sun, J. Gordillo Arias de Saavedra, and D. Lohse
J. Fluid Mech. 779, R3 (2015)BibTeΧ



Nonlinear instability and convection in a vertically vibrated granular bed
P. Shukla, I.H. Ansari, D. van der Meer, D. Lohse, and M. Alam
J. Fluid Mech. 761, 123–167 (2014)BibTeΧ

 

The Leidenfrost temperature increase for impacting droplets on carbon-nanofiber surfaces[arΧiv]
H. Nair, H.J.J. Staat, A.T. Tran, A. van Houselt, A. Prosperetti, D. Lohse, and C. Sun
Soft Matter 10, 2102–2109 (2014)BibTeΧ

 

Formation and removal of apical vapor lock during syringe irrigation: a combined experimental and Computational Fluid Dynamics approach
C. Boutsioukis, E. Kastrinakis, T. Lambrianidis, B. Verhaagen, M. Versluis, and L.W.M. van der Sluis
Int. Endod. J. 47, 191–201 (2013)BibTeΧ

Spatial organization of surface nanobubbles and its implications in their formation process
H.E. Lhuissier, D. Lohse, and X. Zhang
Soft Matter 10, 942–946 (2014)BibTeΧ

 

The microfluidic Kelvin water dropper[arΧiv]
A. Marin, W. van Hoeve, P. García-Sánchez, L. Shui, Y. Xie, M.A. Fontelos, J.C.T. Eijkel, A. van den Berg, and D. Lohse
Lab Chip 13, 4503–4506 (2013)BibTeΧ
See also: Cover of the journal

NWO folder (Sep, 2013).

Collapse and pinch-off of a non-axisymmetric impact-created air cavity in water[arΧiv]
O.R. Enríquez, I.R. Peters, S. Gekle, L.E. Schmidt, D. Lohse, and D. van der Meer
J. Fluid Mech. 701, 40–58 (2012)BibTeΧ
See also: cover page, JFM 701 (2012)

Absence of an evaporation-driven wetting transition on omniphobic surfaces
A. Susarrey-Arce, A. Marin, H. Nair, L. Lefferts, H.J.G.E. Gardeniers, D. Lohse, and A. van Houselt
Soft Matter 8, 9765–9770 (2012)BibTeΧ

Microscopic structure influencing macroscopic splash at high Weber number
P.A. Tsai, M.H.W. Hendrix, R.R.M. Dijkstra, L. Shui, and D. Lohse
Soft Matter 7, 11325–11333 (2011)BibTeΧ

Supersonic Air Flow due to Solid-Liquid Impact[arΧiv]
S. Gekle, I.R. Peters, J. Gordillo Arias de Saavedra, D. van der Meer, and D. Lohse
Phys. Rev. Lett. 104, 024501 (2010)BibTeΧ
See also: Nature News & Views
See also: Viewpoint in Physics

The effect of apical preparation size on irrigant flow in root canals evaluated using an unsteady Computational Fluid Dynamics model
C. Boutsioukis, C. Gogos, B. Verhaagen, M. Versluis, E. Kastrinakis, and L.W.M. van der Sluis
Int. Endod. J. 43, 874–881 (2010)BibTeΧ

Prandtl- Rayleigh-, and Rossby-Number Dependence of Heat Transport in Turbulent Rotating Rayleigh-Bénard Convection ,[arΧiv]
J.Q. Zhong, R.J.A.M. Stevens, H.J.H. Clercx, R. Verzicco, D. Lohse, and G. Ahlers
Phys. Rev. Lett. 102, 044502 (2009)BibTeΧ
See also: cover of that issue

Drop Impact upon Micro- and Nanostructured Superhydrophobic Surfaces[arΧiv]
P.A. Tsai, S. Pacheco, C. Pirat, L. Lefferts, and D. Lohse
Langmuir 25, 12293–12298 (2009)BibTeΧ
See also: cover of that issue

Motion and wake structure of spherical particles[arΧiv]
C.H.J. Veldhuis, A. Biesheuvel, L. van Wijngaarden, and D. Lohse
Nonlinearity 18, C1 (2004)BibTeΧ

Sudden Collapse of a Granular Cluster[arΧiv]
D. van der Meer, J.P. van der Weele, and D. Lohse
Phys. Rev. Lett. 88, 174302 (2002)BibTeΧ

Physical Review focus stories

Focus: Why Dropping a Stone Makes a Jet

Focus: The Little Bubbles that Could

Top 5 most cited

Single-bubble sonoluminescence
M.P. Brenner, S. Hilgenfeldt, and D. Lohse
Rev. Mod. Phys. 74, 425–484 (2002)BibTeΧ
Scaling in thermal convection: a unifying theory[arΧiv]
S. Grossmann and D. Lohse
J. Fluid Mech. 407, 27–56 (2000)BibTeΧ
Phase diagrams for sonoluminescing bubbles[arΧiv]
S. Hilgenfeldt, D. Lohse, and M.P. Brenner
Phys. Fluids 8, 2808–2826 (1996)BibTeΧ
Sonoluminescing Air Bubbles Rectify Argon[arΧiv]
D. Lohse, M.P. Brenner, T.F. Dupont, S. Hilgenfeldt, and B. Johnston
Phys. Rev. Lett. 78, 1359–1362 (1997)BibTeΧ
See also Physics Today 50, Number 8, page 9 (August 1997).
A simple explanation of light emission in sonoluminescence
S. Hilgenfeldt, S. Grossmann, and D. Lohse
Nature 398, 402–405 (1999)BibTeΧ
See also the accompanying: “News and Views”: “And there was light” by Robert Apfel, Nature 398, 378-379 (1999)


Rayleigh Benard convection conference 2018 rbc2018
Max Planck Gesellschaft
MCEC
Twente
Centre for Scientific Computing
Facebook
YouTube