Wave-Vortex Interaction

Alfredo García-Cid

May 2016

Abstract

We study, theoretically and experimentally, gravity waves-vortex interaction in a newtonian fluid. Our experimental setup consists of a rectangular tank filled with water up to a height h. Waves are generated with an electromechanical vibrator that moves horizontally, with frequency ω , the entire tank and the vortical field is generated by four motors, rotating with frequency Ω , placed at the bottom of the tank. We measure the surface deformation η in one point, the acceleration of the tank a, and the force in the wall F. We compute the transfer function $T(\omega) = |\frac{\eta(\omega)}{a/\omega^2}|^2$ for several values of ω , Ω , and h. In particular, we study low frequency resonances and show how vorticity attenuates $T(\omega)$. Theoretically, we use the Navier-Stokes equations to calculate the dissipation for this particular geometry and, using the standard normal mode representations for rectangular boxes, the dissipation coefficient.