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ABSTRACT

The study of exchanges of energy taking place within nonlinear wave systems has relevance
for geophysical flows, oceanic waves, nuclear fusion devices and nonlinear optics. Certain
efficient transfers are manifest as extreme events, localised in space and time, and can have
serious consequences. The precise mechanisms by which energy is most efficiently transferred
in a turbulent system remain an important open question. In this talk we present a newly
discovered resonance [1] which is found to drive transfers across the spectrum of Fourier
modes in a nonlinear finite-amplitude wave system. Quadratic nonlinearity of the governing
PDE results in modes interacting in triads and, by considering the precessional frequencies
of the ’triad phases’, we show transfers are maximal when the precession resonates with the
non-linear temporal frequencies. This can lead to a collective state of synchronised triads with
intense cascades at intermediate nonlinearity.

Here we focus on results for the Charney-Hasegawa-Mima(CHM) equation in 2-D, given by
eq. (1). This PDE has specific applications for Rossby waves in the atmosphere and drift waves
in inhomogeneous plasmas.
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To facilitate our analysis we decompose the solution field into Fourier modes, where each
Fourier component Ak(t) satisfies the ODE evolution equation given below in eq. (2).
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(interaction coefficients).

The results presented focus on heavily truncated Fourier systems where we find that the phase
precession resonance mechanism is driven by the unstable manifolds of periodic orbits. This



energy transfer is exposed through a rescaling of the systems initial energy that allows us to
explicitly locating some of these periodic orbits and examining their trajectories with respect
to the efficiency of the energy transfer. Analytically predicted precession values coincide with
peak enstropy transfer as seen in Fig. 1 . Results from this small scale model are then expanded
to larger systems [2] where the same quadratic non-linear interactions between Fourier modes
leads to a similar correlation between phase precession frequency and Fourier mode amplitude.
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Figure 1: Numerical results for the efficiency of enstrophy E transfer (bottom) and value of dimen-
sionless precession of second triad Ωk4

k2k3
(top) as a function of an initial amplitude scaling factor α.

Vertical lines α0 , α1 and α2 represent the analytically predicted resonances and horizontal lines Γ√
E

and 2Γ√
E show the harmonics of the nonlinear frequency Γ.
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